This function provides several scores for model validation and performance assessment. Scores can be also used to compare models.

score(object, type = "mse", data = NULL, ...)

Arguments

object

An object of class explainer created with function explain from the DALEX package.

type

The score to be calculated. Possible values: acc, auc, cookdistance, dw, f1, gini, halfnormal, mae, mse, peak, precision, r2, rec, recall, rmse, rroc, runs, specificity, one_minus_acc, one_minus_auc, one_minus_f1, one_minus_gini, one_minus_precision, one_minus_recall, one_minus_specificity (for detailed description see functions in see also section).

data

New data that will be used to calculate the score. Pass NULL if you want to use data from object.

...

Other arguments dependent on the type of score.

Value

An object of class auditor_score, except Cooks distance, where numeric vector is returned.

See also

Examples

dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!
# calculate score score(lm_audit, type = 'mae')
#> mae: 31.81926