This function provides several scores for model validation and performance assessment. Scores can be also used to compare models.
score(object, type = "mse", data = NULL, ...)
| object | An object of class |
|---|---|
| type | The score to be calculated. Possible values: |
| data | New data that will be used to calculate the score. Pass |
| ... | Other arguments dependent on the type of score. |
An object of class auditor_score, except Cooks distance, where numeric vector is returned.
score_acc, score_auc, score_cooksdistance, score_dw, score_f1,
score_gini score_halfnormal, score_mae, score_mse, score_peak,
score_precision, score_r2, score_rec, score_recall, score_rmse,
score_rroc, score_runs, score_specificity, score_one_minus_acc,
score_one_minus_auc,
score_one_minus_f1, score_one_minus_gini, score_one_minus_precision, score_one_minus_recall,
score_one_minus_specificity
dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!# calculate score score(lm_audit, type = 'mae')#> mae: 31.81926