This function provides several scores for model validation and performance assessment. Scores can be also used to compare models.
score(object, type = "mse", data = NULL, ...)
object | An object of class |
---|---|
type | The score to be calculated. Possible values: |
data | New data that will be used to calculate the score. Pass |
... | Other arguments dependent on the type of score. |
An object of class auditor_score
, except Cooks distance, where numeric vector is returned.
score_acc
, score_auc
, score_cooksdistance
, score_dw
, score_f1
,
score_gini
score_halfnormal
, score_mae
, score_mse
, score_peak
,
score_precision
, score_r2
, score_rec
, score_recall
, score_rmse
,
score_rroc
, score_runs
, score_specificity
, score_one_minus_acc
,
score_one_minus_auc
,
score_one_minus_f1
, score_one_minus_gini
, score_one_minus_precision
, score_one_minus_recall
,
score_one_minus_specificity
dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!# calculate score score(lm_audit, type = 'mae')#> mae: 31.81926