The area over the Regression Error Characteristic curve is a measure of the expected error for the regression model.
score_rec(object, data = NULL, y = NULL, ...) scoreREC(object)
object | An object of class |
---|---|
data | New data that will be used to calculate the score.
Pass |
y | New y parameter will be used to calculate score. |
... | Other arguments dependent on the type of score. |
An object of class auditor_score
.
J. Bi, and K. P. Bennet, "Regression error characteristic curves," in Proc. 20th Int. Conf. Machine Learning, Washington DC, 2003, pp. 43-50
dragons <- DALEX::dragons[1:100, ] # fit a model lm_model <- lm(life_length ~ ., data = dragons) # create an explainer lm_audit <- audit(lm_model, data = dragons, y = dragons$life_length)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!# calculate score score_rec(lm_audit)#> rec: 31.06331