One minus recall
score_one_minus_recall(object, cutoff = 0.5, data = NULL, y = NULL, ...)
object | An object of class |
---|---|
cutoff | Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix.
By default it's |
data | New data that will be used to calculate the score.
Pass |
y | New y parameter will be used to calculate score. |
... | Other arguments dependent on the type of score. |
An object of class auditor_score
.
library(DALEX) # fit a model model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed) # create an explainer exp_glm <- explain(model_glm, data = titanic_imputed, y = titanic_imputed$survived)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.glm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task classification ( default ) #> -> predicted values : numerical, min = 0.008128381 , mean = 0.3221568 , max = 0.9731431 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -0.9628583 , mean = -2.569729e-10 , max = 0.9663346 #> A new explainer has been created!# calculate score score_one_minus_recall(exp_glm)#> one_minus_recall: 0.4261603