One minus accuracy

score_one_minus_acc(object, cutoff = 0.5, data = NULL, y = NULL, ...)

Arguments

object

An object of class explainer created with function explain from the DALEX package.

cutoff

Threshold value, which divides model predicted values to calculate confusion matrix. By default it's 0.5.

data

New data that will be used to calculate the score. Pass NULL if you want to use data from object.

y

New y parameter will be used to calculate score.

...

Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Examples

data(titanic_imputed, package = "DALEX") # fit a model model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed) # create an explainer glm_audit <- audit(model_glm, data = titanic_imputed, y = titanic_imputed$survived)
#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.glm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task classification ( default ) #> -> predicted values : numerical, min = 0.008128381 , mean = 0.3221568 , max = 0.9731431 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -0.9628583 , mean = -2.569729e-10 , max = 0.9663346 #> A new explainer has been created!
# calculate score score_one_minus_acc(glm_audit)
#> one_minus_acc: 0.1998188