Creates auditor_model_performance
object that can be used to plot radar with ranking of models.
model_performance( object, score = c("mae", "mse", "rec", "rroc"), new_score = NULL, data = NULL, ... ) modelPerformance( object, score = c("mae", "mse", "rec", "rroc"), new_score = NULL )
object | An object of class |
---|---|
score | Vector of score names to be calculated. Possible values: |
new_score | A named list of functions that take one argument: object of class 'explainer' and return a numeric value. The measure calculated by the function should have the property that lower score value indicates better model. |
data | New data that will be used to calculate scores. Pass |
... | Other arguments dependent on the score list. |
An object of the class auditor_model_performance
.
score_acc
, score_auc
, score_cooksdistance
, score_dw
,
score_f1
, score_gini
,
score_halfnormal
, score_mae
, score_mse
,
score_peak
, score_precision
, score_r2
,
score_rec
, score_recall
, score_rmse
,
score_rroc
, score_runs
, score_specificity
,
score_one_minus_acc
, score_one_minus_auc
, score_one_minus_f1
,
score_one_minus_precision
, score_one_minus_gini
,
score_one_minus_recall
, score_one_minus_specificity
data(titanic_imputed, package = "DALEX") # fit a model model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed) # use DALEX package to wrap up a model into explainer glm_audit <- audit(model_glm, data = titanic_imputed, y = titanic_imputed$survived)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.glm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task classification ( default ) #> -> predicted values : numerical, min = 0.008128381 , mean = 0.3221568 , max = 0.9731431 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -0.9628583 , mean = -2.569729e-10 , max = 0.9663346 #> A new explainer has been created!#> Measures for: classification #> recall : 0.5738397 #> precision : 0.7472527 #> f1 : 0.6491647 #> accuracy : 0.8001812 #> auc : 0.8115462 #> #> Residuals: #> 0% 10% 20% 30% 40% 50% #> -0.96285832 -0.32240247 -0.23986439 -0.19544185 -0.14842925 -0.11460334 #> 60% 70% 80% 90% 100% #> -0.06940964 0.06185475 0.29607060 0.72120412 0.96633458