This function plots objects of class "surv_model_performance" - visualization of metrics of different models created using the model_performance(..., type="metrics") function.

# S3 method for surv_model_performance
plot(
  x,
  ...,
  metrics = NULL,
  metrics_type = "time_dependent",
  title = "Model performance",
  subtitle = "default",
  facet_ncol = NULL,
  colors = NULL,
  rug = "all",
  rug_colors = c("#dd0000", "#222222")
)

Arguments

x

an object of class "surv_model_performance" to be plotted

...

additional objects of class "surv_model_performance" to be plotted together

metrics

character, names of metrics to be plotted (subset of C/D AUC", "Brier score" for metrics_type %in% c("time_dependent", "functional") or subset of "C-index","Integrated Brier score", "Integrated C/D AUC" for metrics_type == "scalar"), by default (NULL) all metrics of a given type are plotted

metrics_type

character, either one of c("time_dependent","functional") for functional metrics or "scalar" for scalar metrics

title

character, title of the plot

subtitle

character, subtitle of the plot, 'default' automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels

facet_ncol

number of columns for arranging subplots

colors

character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")

rug

character, one of "all", "events", "censors", "none" or NULL. Which times to mark on the x axis in geom_rug().

rug_colors

character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.

Value

An object of the class ggplot.

See also

Other functions for plotting 'model_performance_survival' objects: plot.model_performance_survival(), plot.surv_model_performance_rocs()

Examples

library(survival)
library(survex)

# \donttest{
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
#> Preparation of a new explainer is initiated 
#>   -> model label       :  rfsrc (  default  ) 
#>   -> data              :  137  rows  6  cols (  extracted from the model  ) 
#>   -> target variable   :  137  values ( 128 events and 9 censored , censoring rate = 0.066 ) (  extracted from the model  ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  sum over the predict_cumulative_hazard_function will be used (  default  ) 
#>   -> predict survival function  :  stepfun based on predict.rfsrc()$survival will be used (  default  ) 
#>   -> predict cumulative hazard function  :  stepfun based on predict.rfsrc()$chf will be used (  default  ) 
#>   -> model_info        :  package randomForestSRC , ver. 3.2.3 , task survival (  default  ) 
#>   A new explainer has been created!  

m_perf <- model_performance(exp)
plot(m_perf)
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).

# }