R/plot_model_performance_survival.R
plot.model_performance_survival.Rd
This function is a wrapper for plotting model_performance
objects created for survival models
using the model_performance()
function.
# S3 method for model_performance_survival
plot(x, ...)
an object of class "model_performance_survival"
to be plotted
additional parameters passed to the plot.surv_model_performance
or plot.surv_model_performance_rocs
function
An object of the class ggplot
.
plot.surv_model_performance
x
- an object of class "surv_model_performance"
to be plotted
...
- additional objects of class "surv_model_performance"
to be plotted together
metrics
- character, names of metrics to be plotted (subset of C/D AUC", "Brier score" for metrics_type %in% c("time_dependent", "functional")
or subset of "C-index","Integrated Brier score", "Integrated C/D AUC" for metrics_type == "scalar"
), by default (NULL
) all metrics of a given type are plotted
metrics_type
- character, either one of c("time_dependent","functional")
for functional metrics or "scalar"
for scalar metrics
title
- character, title of the plot
subtitle
- character, subtitle of the plot, 'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
facet_ncol
- number of columns for arranging subplots
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
rug
- character, one of "all"
, "events"
, "censors"
, "none"
or NULL
. Which times to mark on the x axis in geom_rug()
.
rug_colors
- character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.
plot.surv_model_performance_rocs
x
- an object of class "surv_model_performance_rocs"
to be plotted
...
- additional objects of class "surv_model_performance_rocs"
to be plotted together
title
- character, title of the plot
subtitle
- character, subtitle of the plot, 'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
facet_ncol
- number of columns for arranging subplots
Other functions for plotting 'model_performance_survival' objects:
plot.surv_model_performance_rocs()
,
plot.surv_model_performance()
# \donttest{
library(survival)
library(survex)
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
#> Preparation of a new explainer is initiated
#> -> model label : rfsrc ( default )
#> -> data : 137 rows 6 cols ( extracted from the model )
#> -> target variable : 137 values ( 128 events and 9 censored , censoring rate = 0.066 ) ( extracted from the model )
#> -> times : 50 unique time points , min = 1.5 , median survival time = 80 , max = 999
#> -> times : ( generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator )
#> -> predict function : sum over the predict_cumulative_hazard_function will be used ( default )
#> -> predict survival function : stepfun based on predict.rfsrc()$survival will be used ( default )
#> -> predict cumulative hazard function : stepfun based on predict.rfsrc()$chf will be used ( default )
#> -> model_info : package randomForestSRC , ver. 3.2.3 , task survival ( default )
#> A new explainer has been created!
m_perf <- model_performance(exp)
plot(m_perf, metrics_type = "functional")
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).
m_perf_roc <- model_performance(exp, type = "roc", times = c(100, 300))
plot(m_perf_roc)
# }