R/plot_model_performance_survival.R
    plot.model_performance_survival.RdThis function is a wrapper for plotting model_performance objects created for survival models
using the model_performance() function.
# S3 method for model_performance_survival
plot(x, ...)an object of class "model_performance_survival" to be plotted
additional parameters passed to the plot.surv_model_performance or plot.surv_model_performance_rocs function
An object of the class ggplot.
plot.surv_model_performancex - an object of class "surv_model_performance" to be plotted
... - additional objects of class "surv_model_performance" to be plotted together
metrics - character, names of metrics to be plotted (subset of C/D AUC", "Brier score" for metrics_type %in% c("time_dependent", "functional") or subset of "C-index","Integrated Brier score", "Integrated C/D AUC" for metrics_type == "scalar"), by default (NULL) all metrics of a given type are plotted
metrics_type - character, either one of c("time_dependent","functional") for functional metrics or "scalar" for scalar metrics
title - character, title of the plot
subtitle - character, subtitle of the plot, 'default' automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
facet_ncol - number of columns for arranging subplots
colors - character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
rug - character, one of "all", "events", "censors", "none" or NULL. Which times to mark on the x axis in geom_rug().
rug_colors - character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.
plot.surv_model_performance_rocsx - an object of class "surv_model_performance_rocs" to be plotted
... - additional objects of class "surv_model_performance_rocs" to be plotted together
title - character, title of the plot
subtitle - character, subtitle of the plot, 'default' automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
colors - character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
facet_ncol - number of columns for arranging subplots
Other functions for plotting 'model_performance_survival' objects: 
plot.surv_model_performance_rocs(),
plot.surv_model_performance()
# \donttest{
library(survival)
library(survex)
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
#> Preparation of a new explainer is initiated 
#>   -> model label       :  rfsrc (  default  ) 
#>   -> data              :  137  rows  6  cols (  extracted from the model  ) 
#>   -> target variable   :  137  values ( 128 events and 9 censored , censoring rate = 0.066 ) (  extracted from the model  ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  sum over the predict_cumulative_hazard_function will be used (  default  ) 
#>   -> predict survival function  :  stepfun based on predict.rfsrc()$survival will be used (  default  ) 
#>   -> predict cumulative hazard function  :  stepfun based on predict.rfsrc()$chf will be used (  default  ) 
#>   -> model_info        :  package randomForestSRC , ver. 3.2.3 , task survival (  default  ) 
#>   A new explainer has been created!  
m_perf <- model_performance(exp)
plot(m_perf, metrics_type = "functional")
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).
m_perf_roc <- model_performance(exp, type = "roc", times = c(100, 300))
plot(m_perf_roc)
# }