approx_with_spline.Rd
It approximates data with spline function by fitting GAM model.
approx_with_spline(effect_data, response, predictor, env = parent.frame(), ...) approx_with_monotonic_spline(effect_data, response, predictor, env = parent.frame(), monotonic, ...)
effect_data | Black box response data, for example pdp curve. |
---|---|
response | Name of response value from effect_data. |
predictor | Name of predictor value from effect_data. |
env | Formula environment that should be used for fitting gam model. |
... | Other arguments passed to s function. |
monotonic | Possible options "up", "down" and "auto. If up the spline is increasing, when down decreasing. |
Object of class "gam". See gamObject
x <- sort(rnorm(20, 5, 5)) y <- rnorm(20, 2, 2) env <- new.env() approx_with_spline(data.frame(x = x, y = y), "y", "x", env)#> #> Family: gaussian #> Link function: identity #> #> Formula: #> y ~ s(x) #> #> Estimated degrees of freedom: #> 1 total = 2 #> #> GCV score: 4.577151#> Warning: initial point very close to some inequality constraints#> Warning: initial parameters very close to inequality constraints#> #> Family: gaussian #> Link function: identity #> #> Formula: #> y ~ s(x) #> #> Estimated degrees of freedom: #> 1 total = 2 #> #> GCV score: 4.577151