R/plot_predict_parts_survival.R
plot.predict_parts_survival.Rd
This function plots objects of class "predict_parts_survival"
- local explanations
for survival models created using the predict_parts()
function.
# S3 method for predict_parts_survival
plot(x, ...)
an object of class "predict_parts_survival"
to be plotted
additional parameters passed to the plot.surv_shap
or plot.surv_lime
functions
An object of the class ggplot
.
plot.surv_shap
x
- an object of class "surv_shap"
to be plotted
...
- additional objects of class surv_shap
to be plotted together
title
- character, title of the plot
subtitle
- character, subtitle of the plot, 'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
max_vars
- maximum number of variables to be plotted (least important variables are ignored)
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
rug
- character, one of "all"
, "events"
, "censors"
, "none"
or NULL
. Which times to mark on the x axis in geom_rug()
.
rug_colors
- character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.
plot.surv_lime
x
- an object of class "surv_lime"
to be plotted
type
- character, either "coefficients" or "local_importance", selects the type of plot
show_survival_function
- logical, if the survival function of the explanations should be plotted next to the barplot
...
- other parameters currently ignored
title
- character, title of the plot
subtitle
- character, subtitle of the plot, 'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels
max_vars
- maximum number of variables to be plotted (least important variables are ignored)
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
Other functions for plotting 'predict_parts_survival' objects:
plot.surv_lime()
,
plot.surv_shap()
# \donttest{
library(survival)
library(survex)
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
#> Preparation of a new explainer is initiated
#> -> model label : rfsrc ( default )
#> -> data : 137 rows 6 cols ( extracted from the model )
#> -> target variable : 137 values ( 128 events and 9 censored , censoring rate = 0.066 ) ( extracted from the model )
#> -> times : 50 unique time points , min = 1.5 , median survival time = 80 , max = 999
#> -> times : ( generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator )
#> -> predict function : sum over the predict_cumulative_hazard_function will be used ( default )
#> -> predict survival function : stepfun based on predict.rfsrc()$survival will be used ( default )
#> -> predict cumulative hazard function : stepfun based on predict.rfsrc()$chf will be used ( default )
#> -> model_info : package randomForestSRC , ver. 3.2.3 , task survival ( default )
#> A new explainer has been created!
p_parts_shap <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survshap")
plot(p_parts_shap)
p_parts_lime <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survlime")
plot(p_parts_lime)
# }