Conditional Dependence Profiles (aka Local Profiles) average localy Ceteris Paribus Profiles. Function 'conditional_dependence' calls 'ceteris_paribus' and then 'aggregate_profiles'.
conditional_dependence(x, ...)
# S3 method for explainer
conditional_dependence(
x,
variables = NULL,
N = 500,
variable_splits = NULL,
grid_points = 101,
...,
variable_type = "numerical"
)
# S3 method for default
conditional_dependence(
x,
data,
predict_function = predict,
label = class(x)[1],
variables = NULL,
N = 500,
variable_splits = NULL,
grid_points = 101,
...,
variable_type = "numerical"
)
# S3 method for ceteris_paribus_explainer
conditional_dependence(x, ..., variables = NULL)
local_dependency(x, ...)
conditional_dependency(x, ...)
an explainer created with function DALEX::explain()
, an object of the class ceteris_paribus_explainer
or a model to be explained.
other parameters
names of variables for which profiles shall be calculated.
Will be passed to calculate_variable_split
. If NULL
then all variables from the validation data will be used.
number of observations used for calculation of partial dependence profiles. By default 500
.
named list of splits for variables, in most cases created with calculate_variable_split
.
If NULL
then it will be calculated based on validation data avaliable in the explainer
.
number of points for profile. Will be passed to calculate_variable_split
.
a character. If "numerical"
then only numerical variables will be calculated.
If "categorical"
then only categorical variables will be calculated.
validation dataset, will be extracted from x
if it's an explainer
NOTE: It is best when target variable is not present in the data
predict function, will be extracted from x
if it's an explainer
name of the model. By default it's extracted from the class
attribute of the model
an object of the class aggregated_profile_explainer
Find more details in the Accumulated Local Dependence Chapter.
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
library("DALEX")
library("ingredients")
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed[,-8],
y = titanic_imputed[,8],
verbose = FALSE)
cdp_glm <- conditional_dependence(explain_titanic_glm,
N = 150, variables = c("age", "fare"))
head(cdp_glm)
#> Top profiles :
#> _vname_ _label_ _x_ _yhat_ _ids_
#> age.lm.0.1666666667 age lm 0.1666667 0.3762917 0
#> age.lm.2 age lm 2.0000000 0.3713934 0
#> age.lm.4 age lm 4.0000000 0.3662976 0
#> age.lm.7 age lm 7.0000000 0.3591476 0
#> age.lm.9 age lm 9.0000000 0.3547151 0
#> age.lm.13 age lm 13.0000000 0.3466645 0
plot(cdp_glm)
# \donttest{
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)
explain_titanic_rf <- explain(model_titanic_rf,
data = titanic_imputed[,-8],
y = titanic_imputed[,8],
label = "ranger forest",
verbose = FALSE)
cdp_rf <- conditional_dependence(explain_titanic_rf, N = 200, variable_type = "numerical")
plot(cdp_rf)
cdp_rf <- conditional_dependence(explain_titanic_rf, N = 200, variable_type = "categorical")
plotD3(cdp_rf, label_margin = 100, scale_plot = TRUE)
# }