Density of model residuals.

plot_residual_density(object, ..., variable = "", show_rugs = TRUE)

plotResidualDensity(object, ..., variable = NULL)

Arguments

object

An object of class auditor_model_residual created with model_residual function.

...

Other auditor_model_residual objects to be plotted together.

variable

Split plot by variable's factor level or median. If variable="_y_", the plot will be split by actual response (y parameter passed to the explain function). If variable = "_y_hat_" the plot will be split by predicted response. If variable = NULL, the plot will be split by observation index If variable = "" plot is not split (default option).

show_rugs

Adds rugs layer to the plot. By default it's TRUE

Value

A ggplot object.

See also

Examples

dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!
# validate a model with auditor mr_lm <- model_residual(lm_audit) # plot results plot_residual_density(mr_lm)
plot(mr_lm, type = "residual_density")
library(randomForest) model_rf <- randomForest(life_length~., data = dragons) rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : randomForest ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.randomForest will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package randomForest , ver. 4.6.14 , task regression ( default ) #> -> predicted values : numerical, min = 767.5024 , mean = 1340.312 , max = 2459.044 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -193.1251 , mean = 7.474659 , max = 439.3765 #> A new explainer has been created!
mr_rf <- model_residual(rf_audit) plot_residual_density(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type = "residual_density")