Radar plot with model score. score are scaled to [0,1], each score is inversed and divided by maximum score value.

plot_radar(object, ..., verbose = TRUE)

plotModelRanking(object, ..., verbose = TRUE)

Arguments

object

An object of class auditor_model_performance created with model_performance function.

...

Other auditor_model_performance objects to be plotted together.

verbose

Logical, indicates whether values of scores should be printed.

Value

A ggplot object.

Examples

dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!
# validate a model with auditor mp_lm <- model_performance(lm_audit) library(randomForest) model_rf <- randomForest(life_length~., data = dragons) rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : randomForest ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.randomForest will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package randomForest , ver. 4.6.14 , task regression ( default ) #> -> predicted values : numerical, min = 763.6184 , mean = 1342.852 , max = 2458.261 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -178.9473 , mean = 4.934734 , max = 440.1598 #> A new explainer has been created!
mp_rf <- model_performance(rf_audit) # plot results plot_radar(mp_lm, mp_rf)
#> Error in check_object(object, type = "prfm"): The function requires an object created with function model_performance(). Please, see the current workflow in the paper https://arxiv.org/abs/1809.07763