Creates explanation of classification model.
Returns, among others, true positive rate (tpr), false positive rate (fpr), rate of positive prediction (rpp), and true positives (tp).
Created object of class auditor_model_evaluation
can be used to plot
Receiver Operating Characteristic (ROC) curve (plot plot_roc
) and LIFT curve (plot plot_lift
).
model_evaluation(object) modelEvaluation(object)
object | An object of class |
---|
An object of the class auditor_model_evaluation
.
data(titanic_imputed, package = "DALEX") # fit a model model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed) glm_audit <- audit(model_glm, data= titanic_imputed, y = titanic_imputed$survived)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 2207 rows 8 cols #> -> target variable : 2207 values #> -> predict function : yhat.glm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task classification ( default ) #> -> predicted values : numerical, min = 0.008128381 , mean = 0.3221568 , max = 0.9731431 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -0.9628583 , mean = -2.569729e-10 , max = 0.9663346 #> A new explainer has been created!# validate a model with auditor me <- model_evaluation(glm_audit) me#> Model label: lm #> #> True Positive Rate for cutoff 0.5: 0 #> #> False Positive Rate for cutoff 0.5: 0