Convert your randomForest model into a standardized representation.
The returned representation is easy to be interpreted by the user and ready to be used as an argument in treeshap() function.
randomForest.unify(rf_model, data)An object of randomForest class. At the moment, models built on data with categorical features
are not supported - please encode them before training.
Reference dataset. A data.frame or matrix with the same columns as in the training set of the model. Usually dataset used to train model.
a unified model representation - a model_unified.object object
Binary classification models with a target variable that is a factor with two levels, 0 and 1, are supported
if (requireNamespace("randomForest", quietly = TRUE)) {
library(randomForest)
data_fifa <- fifa20$data[
!colnames(fifa20$data) %in%
c(
'work_rate',
'value_eur',
'gk_diving',
'gk_handling',
'gk_kicking',
'gk_reflexes',
'gk_speed',
'gk_positioning'
)
]
data <- na.omit(cbind(data_fifa, target = fifa20$target))
rf <- randomForest::randomForest(
target ~ .,
data = data,
maxnodes = 10,
ntree = 10
)
unified_model <- randomForest.unify(rf, data)
shaps <- treeshap(unified_model, data[1:2, ])
# plot_contribution(shaps, obs = 1)
}
#> randomForest 4.7-1.2
#> Type rfNews() to see new features/changes/bug fixes.
#>
|0%----|------|20%---|------|40%---|------|60%---|------|80%---|------|100%
#> =---------------------------------------------------------------------- (0%)
====================================----------------------------------- (50%)
======================================================================= (100%)