R/plot_feature_importance.R
plot_feature_importance.RdThis function plots feature importance calculated as means of absolute values of SHAP values of variables (average impact on model output magnitude).
plot_feature_importance(
treeshap,
desc_sorting = TRUE,
max_vars = ncol(shaps),
title = "Feature Importance",
subtitle = NULL
)A treeshap object produced with the treeshap function. treeshap.object.
logical. Should the bars be sorted descending? By default TRUE.
maximum number of variables that shall be presented. By default all are presented.
the plot's title, by default 'Feature Importance'.
the plot's subtitle. By default no subtitle.
a ggplot2 object
treeshap for calculation of SHAP values
plot_contribution, plot_feature_dependence, plot_interaction
# \donttest{
library(xgboost)
data <- fifa20$data[colnames(fifa20$data) != 'work_rate']
target <- fifa20$target
param <- list(objective = "reg:squarederror", max_depth = 3)
xgb_model <- xgboost::xgboost(as.matrix(data), params = param, label = target,
nrounds = 20, verbose = FALSE)
unified_model <- xgboost.unify(xgb_model, as.matrix(data))
shaps <- treeshap(unified_model, as.matrix(head(data, 3)))
#>
|0%----|------|20%---|------|40%---|------|60%---|------|80%---|------|100%
#> =---------------------------------------------------------------------- (0%)
========================----------------------------------------------- (33%)
===============================================------------------------ (66%)
======================================================================= (100%)
plot_feature_importance(shaps, max_vars = 4)
# }