This function subtracts the C-index metric from one to obtain a loss function whose lower values indicate better model performance (useful for permutational feature importance)

loss_one_minus_c_index(y_true = NULL, risk = NULL, surv = NULL, times = NULL)

Arguments

y_true

a survival::Surv object containing the times and statuses of observations for which the metric will be evaluated

risk

a numeric vector of risk scores corresponding to each observation

surv

ignored, left for compatibility with other metrics

times

ignored, left for compatibility with other metrics

Value

numeric from 0 to 1, lower values indicate better performance

References

  • [1] Harrell, F.E., Jr., et al. "Regression modelling strategies for improved prognostic prediction." Statistics in Medicine 3.2 (1984): 143-152.

See also

Examples

# \donttest{
library(survival)
library(survex)

rotterdam <- survival::rotterdam
rotterdam$year <- NULL
cox_rotterdam_rec <- coxph(Surv(rtime, recur) ~ .,
    data = rotterdam,
    model = TRUE, x = TRUE, y = TRUE
)
coxph_explainer <- explain(cox_rotterdam_rec)
#> Preparation of a new explainer is initiated 
#>   -> model label       :  coxph (  default  ) 
#>   -> data              :  2982  rows  12  cols (  extracted from the model  ) 
#>   -> target variable   :  2982  values ( 1518 events and 1464 censored , censoring rate = 0.491 ) (  extracted from the model  ) 
#>   -> times             :  51 unique time points , min = 43.5 , median survival time = 2983 , max = 6258 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  predict.coxph with type = 'risk' will be used (  default  ) 
#>   -> predict survival function  :  predictSurvProb.coxph will be used (  default  ) 
#>   -> predict cumulative hazard function  :  -log(predict_survival_function) will be used (  default  ) 
#>   -> model_info        :  package survival , ver. 3.7.0 , task survival (  default  ) 
#>   A new explainer has been created!  

risk <- coxph_explainer$predict_function(coxph_explainer$model, coxph_explainer$data)
loss_one_minus_c_index(y_true = coxph_explainer$y, risk = risk)
#> [1] 0.1366642
# }