Prints Individual Variable Explainer Summary

# S3 method for individual_variable_profile_explainer
print(x, ...)

Arguments

x

an individual variable profile explainer produced with the `individual_variable_profile()` function

...

other arguments that will be passed to `head()`

Examples

library("DALEX2")
library("randomForest") set.seed(59) apartments_rf_model <- randomForest(m2.price ~ construction.year + surface + floor + no.rooms + district, data = apartments) explainer_rf <- explain(apartments_rf_model, data = apartments_test[,2:6], y = apartments_test$m2.price) apartments_small <- select_sample(apartments_test, 10) cp_rf <- individual_variable_profile(explainer_rf, apartments_small) cp_rf
#> Top profiles : #> construction.year surface floor no.rooms district _yhat_ #> 8946 1920 123 8 4 Wola 2871.626 #> 8946.1 1921 123 8 4 Wola 2896.045 #> 8946.2 1922 123 8 4 Wola 2901.677 #> 8946.3 1923 123 8 4 Wola 2891.101 #> 8946.4 1923 123 8 4 Wola 2891.101 #> 8946.5 1924 123 8 4 Wola 2890.361 #> _vname_ _ids_ _label_ #> 8946 construction.year 8946 randomForest #> 8946.1 construction.year 8946 randomForest #> 8946.2 construction.year 8946 randomForest #> 8946.3 construction.year 8946 randomForest #> 8946.4 construction.year 8946 randomForest #> 8946.5 construction.year 8946 randomForest #> #> #> Top observations: #> construction.year surface floor no.rooms district _yhat_ _label_ #> 8946 1959 123 8 4 Wola 2386.002 randomForest #> 4458 1927 68 8 2 Ochota 4222.164 randomForest #> 7384 1929 95 5 3 Srodmiescie 4646.023 randomForest #> 5450 1982 124 10 5 Ochota 3062.748 randomForest #> 6744 1982 143 9 6 Ursynow 2171.529 randomForest #> 6688 1938 75 7 3 Wola 3045.947 randomForest #> _ids_ #> 8946 1 #> 4458 2 #> 7384 3 #> 5450 4 #> 6744 5 #> 6688 6