Cumulative Distribution Function for positive and negative residuals.

plot_tsecdf(
  object,
  ...,
  scale_error = TRUE,
  outliers = NA,
  residuals = TRUE,
  reverse_y = FALSE
)

plotTwoSidedECDF(
  object,
  ...,
  scale_error = TRUE,
  outliers = NA,
  residuals = TRUE,
  reverse_y = FALSE
)

Arguments

object

An object of class 'auditor_model_residual' created with model_residual function.

...

Other modelAudit objects to be plotted together.

scale_error

A logical value indicating whether ECDF should be scaled by proportions of positive and negative proportions.

outliers

Number of outliers to be marked.

residuals

A logical value indicating whether residuals should be marked.

reverse_y

A logical value indicating whether values on y axis should be reversed.

Value

A ggplot object.

Examples

dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!
# validate a model with auditor mr_lm <- model_residual(lm_audit) plot_tsecdf(mr_lm)
plot(mr_lm, type="tsecdf")
library(randomForest) model_rf <- randomForest(life_length~., data = dragons) rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
#> Preparation of a new explainer is initiated #> -> model label : randomForest ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.randomForest will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package randomForest , ver. 4.6.14 , task regression ( default ) #> -> predicted values : numerical, min = 751.7767 , mean = 1344.281 , max = 2452.94 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -185.0481 , mean = 3.506103 , max = 445.4805 #> A new explainer has been created!
mr_rf <- model_residual(rf_audit) plot_tsecdf(mr_lm, mr_rf, reverse_y = TRUE)