Principal Component Analysis of models residuals. PCA can be used to assess the similarity of the models.
plot_pca(object, ..., scale = TRUE, arrow_size = 2) plotModelPCA(object, ..., scale = TRUE)
object | An object of class |
---|---|
... | Other |
scale | A logical value indicating whether the models residuals should be scaled before the analysis. |
arrow_size | Width of the arrows. |
A ggplot object.
dragons <- DALEX::dragons[1:100, ] # fit a model model_lm <- lm(life_length ~ ., data = dragons) lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)#> Preparation of a new explainer is initiated #> -> model label : lm ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.lm will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package stats , ver. 4.1.1 , task regression ( default ) #> -> predicted values : numerical, min = 585.8311 , mean = 1347.787 , max = 2942.307 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -88.41755 , mean = -1.489291e-13 , max = 77.92805 #> A new explainer has been created!# validate a model with auditor mr_lm <- model_residual(lm_audit) library(randomForest) model_rf <- randomForest(life_length~., data = dragons) rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)#> Preparation of a new explainer is initiated #> -> model label : randomForest ( default ) #> -> data : 100 rows 8 cols #> -> target variable : 100 values #> -> predict function : yhat.randomForest will be used ( default ) #> -> predicted values : No value for predict function target column. ( default ) #> -> model_info : package randomForest , ver. 4.6.14 , task regression ( default ) #> -> predicted values : numerical, min = 778.2469 , mean = 1341.443 , max = 2484.578 #> -> residual function : difference between y and yhat ( default ) #> -> residuals : numerical, min = -190.0118 , mean = 6.344159 , max = 413.8431 #> A new explainer has been created!