Creates DALEX explainer for PAN model (or other neural network) All DALEX functions such as model_performance are possible to use on the returned explainer.
explain_pan( y, model, label, original_data, data, batch_size, dev, verbose = TRUE )
y | numerical target of classification task |
---|---|
model | net, nn_module, the model we want to explain |
label | character providing the label (name) to first model |
original_data | numerical list (table) of predictors |
data | scaled matrix of numerical values representing predictors |
batch_size | integer indicating a batch size used in dataloader. |
dev | device used to calculations (cpu or gpu) |
verbose | logical indicating if we want to print monitored outputs or not. Default: TRUE. |
DALEX model explainer
if (FALSE) { dev <- "cpu" adult <- fairmodels::adult processed <- preprocess( adult, "salary", "sex", "Male", "Female", c("race"), sample = 0.8, train_size = 0.65, test_size = 0.35, validation_size = 0, seed = 7 ) # presaved torch model model1 <- torch::torch_load(system.file("extdata","clf1",package="fairpan")) dsl <- dataset_loader(processed$train_x, processed$train_y, processed$test_x, processed$test_y, batch_size=5, dev=dev) explainer <- explain_pan( processed$test_y, model1, "classifier", processed$data_test, processed$data_scaled_test, batch_size = 5, dev = dev, verbose = FALSE ) }