These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since information from many models have to be extracted with various techniques.

# S3 method for WrappedModel
yhat(X.model, newdata, ...)

# S3 method for H2ORegressionModel
yhat(X.model, newdata, ...)

# S3 method for H2OBinomialModel
yhat(X.model, newdata, ...)

# S3 method for H2OMultinomialModel
yhat(X.model, newdata, ...)

# S3 method for scikitlearn_model
yhat(X.model, newdata, ...)

# S3 method for keras
yhat(X.model, newdata, ...)

# S3 method for LearnerRegr
yhat(X.model, newdata, ...)

# S3 method for LearnerClassif
yhat(X.model, newdata, ...)

# S3 method for GraphLearner
yhat(X.model, newdata, ...)

# S3 method for xgb.Booster
yhat(X.model, newdata, ...)

# S3 method for workflow
yhat(X.model, newdata, ...)

# S3 method for model_stack
yhat(X.model, newdata, ...)

Arguments

X.model

object - a model to be explained

newdata

data.frame or matrix - observations for prediction

...

other parameters that will be passed to the predict function

Value

An numeric vector of predictions

Details

Currently supported packages are: