These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since information from many models have to be extracted with various techniques.
# S3 method for WrappedModel
yhat(X.model, newdata, ...)
# S3 method for H2ORegressionModel
yhat(X.model, newdata, ...)
# S3 method for H2OBinomialModel
yhat(X.model, newdata, ...)
# S3 method for H2OMultinomialModel
yhat(X.model, newdata, ...)
# S3 method for scikitlearn_model
yhat(X.model, newdata, ...)
# S3 method for keras
yhat(X.model, newdata, ...)
# S3 method for LearnerRegr
yhat(X.model, newdata, ...)
# S3 method for LearnerClassif
yhat(X.model, newdata, ...)
# S3 method for GraphLearner
yhat(X.model, newdata, ...)
# S3 method for xgb.Booster
yhat(X.model, newdata, ...)
# S3 method for workflow
yhat(X.model, newdata, ...)
# S3 method for model_stack
yhat(X.model, newdata, ...)
object - a model to be explained
data.frame or matrix - observations for prediction
other parameters that will be passed to the predict function
An numeric vector of predictions
Currently supported packages are:
mlr
see more in explain_mlr
h2o
see more in explain_h2o
scikit-learn
see more in explain_scikitlearn
keras
see more in explain_keras
mlr3
see more in explain_mlr3
xgboost
see more in explain_xgboost
tidymodels
see more in explain_tidymodels