Score models by suitable metrics

score_models(
  models,
  predictions,
  observed,
  type,
  metrics = "auto",
  sort_by = "auto",
  metric_function = NULL,
  metric_function_name = NULL,
  metric_function_decreasing = TRUE,
  engine = NULL,
  tuning = NULL
)

Arguments

models

A list of models trained by `train_models()` function.

predictions

A list of predictions of every engine from the test data.

observed

A vector of true values from the test data.

type

A string, determines if the future task is `binary_clf` or `regression`.

metrics

A vector of metrics names. By default param set for `auto`, most important metrics are returned. For `all` all metrics are returned. For `NULL` no metrics returned but still sorted by `sort_by`.

sort_by

String with name of metric to sort by. For `auto` models going to be sorted by `mse` for regression and `f1` for classification.

metric_function

The self-created function. It should look like name(predictions, observed) and return the numeric value. In case of using `metrics` param with value other than `auto` or `all`, is needed to use value `metric_function` in order to see given metric in report. If `sort_by` is equal to `auto` models are sorted by `metric_function`.

metric_function_name

The name of the column with values of param `metric_function`. By default `metric_function_name` is `metric_function`.

metric_function_decreasing

A logical value indicating how metric_function should be sorted. `TRUE` by default.

engine

A vector of strings containing information of engine in `models` list.

tuning

A vector of strings containing information of tuning method in `models` list.

Value

A data.frame with 'no.' - number of model from models, 'engine' - name of the model from models, other metrics columns.

Examples

iris_bin          <- iris[1:100, ]
iris_bin$Species  <- factor(iris_bin$Species)
type              <- guess_type(iris_bin, 'Species')
preprocessed_data <- preprocessing(iris_bin, 'Species', type)
#> Error in if (advanced) {    del_cor <- delete_correlated_values(pre_data, y, verbose = verbose)    pre_data <- del_cor$data    pre_data <- delete_id_columns(pre_data)    pre_data <- boruta_selection(pre_data, y)}: argument is not interpretable as logical
preprocessed_data <- preprocessed_data$data
#> Error in eval(expr, envir, enclos): object 'preprocessed_data' not found
split_data <-
  train_test_balance(preprocessed_data,
                     'Species',
                     balance = FALSE)
#> Error in train_test_balance(preprocessed_data, "Species", balance = FALSE): object 'preprocessed_data' not found
train_data <-
  prepare_data(split_data$train,
               'Species',
               engine = c('ranger', 'xgboost', 'decision_tree', 'lightgbm', 'catboost'))
#> Error in as.data.frame(unclass(data), stringsAsFactors = TRUE): object 'split_data' not found
test_data <-
  prepare_data(split_data$test,
               'Species',
               engine = c('ranger', 'xgboost', 'decision_tree', 'lightgbm', 'catboost'),
               predict = TRUE,
               train = split_data$train)
#> Error in as.data.frame(unclass(data), stringsAsFactors = TRUE): object 'split_data' not found
suppressWarnings(
  model <-
    train_models(train_data,
                 'Species',
                 engine = c('ranger', 'xgboost', 'decision_tree', 'lightgbm', 'catboost'),
                 type = type)
)
#> Error in ranger::ranger(dependent.variable.name = y, data = data$ranger_data,     classification = TRUE, probability = TRUE): object 'train_data' not found
predictions <-
  predict_models(model,
                 test_data,
                 'Species',
                 engine = c('ranger', 'xgboost', 'decision_tree', 'lightgbm', 'catboost'),
                 type = type)
#> Error in predict(models[[i]], data$ranger_data): object 'model' not found
score <-
  score_models(model,
               predictions,
               observed = split_data$test$Species,
               type = type)
#> Error in matrix(nrow = length(models), ncol = length(metrics_binary_clf) +     nr_add_col): object 'model' not found