Plot distribution for models output probabilities. See how being in particular subgroup affects models decision.
plot_density(x, ...)
x | object of class |
---|---|
... | other plot parameters |
ggplot2
object
data("compas")
glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit"))
y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1
explainer_glm <- DALEX::explain(glm_compas, data = compas, y = y_numeric)
#> Preparation of a new explainer is initiated
#> -> model label : lm ( default )
#> -> data : 6172 rows 7 cols
#> -> target variable : 6172 values
#> -> predict function : yhat.glm will be used ( default )
#> -> predicted values : No value for predict function target column. ( default )
#> -> model_info : package stats , ver. 4.1.1 , task classification ( default )
#> -> predicted values : numerical, min = 0.1144574 , mean = 0.4551199 , max = 0.995477
#> -> residual function : difference between y and yhat ( default )
#> -> residuals : numerical, min = -0.9767658 , mean = 5.070175e-13 , max = 0.8822826
#> A new explainer has been created!
fobject <- fairness_check(explainer_glm,
protected = compas$Ethnicity,
privileged = "Caucasian"
)
#> Creating fairness classification object
#> -> Privileged subgroup : character ( Ok )
#> -> Protected variable : factor ( Ok )
#> -> Cutoff values for explainers : 0.5 ( for all subgroups )
#> -> Fairness objects : 0 objects
#> -> Checking explainers : 1 in total ( compatible )
#> -> Metric calculation : 8/13 metrics calculated for all models ( 5 NA created )
#> Fairness object created succesfully
plot_density(fobject)