Creates metric_scores object to facilitate visualization. Check how the metric scores differ among models, what is this score, and how it changes for example after applying bias mitigation technique. The vertical black lines denote the scores for privileged subgroup. It is best to use only few metrics (using fairness_metrics parameter)

metric_scores(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))

Arguments

x

object of class fairness_object

fairness_metrics

character, vector with fairness metric names. Default metrics are ones in fairness_check plot, full names can be found in fairness_check documentation.

Value

metric_scores object. It is a list containing:

  • metric_scores_data - data.frame with information about score in particular subgroup, metric, and model

  • privileged - name of privileged subgroup

Examples


data("german")

y_numeric <- as.numeric(german$Risk) -1

lm_model <- glm(Risk~.,
                data = german,
                family=binomial(link="logit"))


explainer_lm <- DALEX::explain(lm_model, data = german[,-1], y = y_numeric)
#> Preparation of a new explainer is initiated
#>   -> model label       :  lm  (  default  )
#>   -> data              :  1000  rows  9  cols 
#>   -> target variable   :  1000  values 
#>   -> predict function  :  yhat.glm  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package stats , ver. 4.1.0 , task classification (  default  ) 
#>   -> predicted values  :  numerical, min =  0.1369187 , mean =  0.7 , max =  0.9832426  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.9572803 , mean =  1.940006e-17 , max =  0.8283475  
#>   A new explainer has been created!  

fobject <- fairness_check(explainer_lm,
                          protected = german$Sex,
                          privileged = "male")
#> Creating fairness classification object
#> -> Privileged subgroup		: character ( Ok  )
#> -> Protected variable		: factor ( Ok  ) 
#> -> Cutoff values for explainers	: 0.5 ( for all subgroups ) 
#> -> Fairness objects		: 0 objects 
#> -> Checking explainers		: 1 in total (  compatible  )
#> -> Metric calculation		: 12/12 metrics calculated for all models
#>  Fairness object created succesfully  

ms <- metric_scores(fobject, fairness_metrics = c('ACC', 'TPR', 'PPV', 'FPR', 'STP'))
plot(ms)


# \donttest{

rf_model <- ranger::ranger(Risk ~.,
                           data = german,
                           probability = TRUE,
                           num.trees = 200)

explainer_rf <- DALEX::explain(rf_model, data = german[,-1], y = y_numeric)
#> Preparation of a new explainer is initiated
#>   -> model label       :  ranger  (  default  )
#>   -> data              :  1000  rows  9  cols 
#>   -> target variable   :  1000  values 
#>   -> predict function  :  yhat.ranger  will be used (  default  )
#>   -> predicted values  :  No value for predict function target column. (  default  )
#>   -> model_info        :  package ranger , ver. 0.12.1 , task classification (  default  ) 
#>   -> predicted values  :  numerical, min =  0.07945635 , mean =  0.6984925 , max =  0.9967857  
#>   -> residual function :  difference between y and yhat (  default  )
#>   -> residuals         :  numerical, min =  -0.7482123 , mean =  0.001507462 , max =  0.6149175  
#>   A new explainer has been created!  

fobject <- fairness_check(explainer_rf, fobject)
#> Creating fairness classification object
#> -> Privileged subgroup		: character ( from first fairness object  ) 
#> -> Protected variable		: factor ( from first fairness object  ) 
#> -> Cutoff values for explainers	: 0.5 ( for all subgroups ) 
#> -> Fairness objects		: 1 object (  compatible  )
#> -> Checking explainers		: 2 in total (  compatible  )
#> -> Metric calculation		: 12/12 metrics calculated for all models
#>  Fairness object created succesfully  

ms <- metric_scores(fobject, fairness_metrics = c('ACC', 'TPR', 'PPV', 'FPR', 'STP'))
plot(ms)


# }