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Abstract

This project investigates the robustness of a YOLOv5-based model(Ultralytics (2021)), fine-
tuned for license plate detection, against adversarial attacks using a variation of DPatch
Liu et al. (2019). Additionally, we explore the interpretability of the model’s predictions
through SHAP Lundberg and Lee (2017).

1. Introduction

In recent years, computer vision models have achieved widespread success. They find appli-
cation in various domains, highlighting their practical significance. However, ensuring the
strength and transparency of these models is crucial, particularly given their deployment
in real-world scenarios. To make sure the model is reliable, it’s crucial to actively look
for weaknesses using methods like adversarial attacks. Also, understanding how the model
behaves becomes really important, so we need to make efforts to explain and interpret its
predictions. This two-pronged approach not only makes the model stronger but also helps
us better grasp how it performs in real-world situations.

2. Methodology

SHAP Lundberg and Lee (2017) or SHapley Additive exPlanations, is a methodology
grounded in cooperative game theory. By assigning Shapley values to features based on
their impact, SHAP enhances the interpretability of complex neural network models, offering
insights into feature contributions.
In our work, we used a custom approach for calculating SHAP values for object detection
problem.

• For a single image we only explain single detection

• We use slic image segmentation algorithm to divide images into patches. For SHAP
calculation we use those patches as features (if the feature is not present, according
patch is filled with mean image color)

• SHAP classification v function (applied to predicted classification probabilites) is mul-
tiplied by IOU(target bbox, predicted bbox) to take into account changes in bbox re-
gression part of model
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DPatch Liu et al. (2019) is an adversarial-patch-based attack method designed for main-
stream object detectors like Faster R-CNN Girshick et al. (2014) and YOLO. It disrupts
both bounding box regression and object classification simultaneously, significantly reducing
the mean Average Precision (mAP) of targeted detectors. Notably Lee and Kolter (2019)
introduce a specific variation of DPatch attack which aims to solve several problems found
in the original algorithm.
YOLO Redmon et al. (2015) is a ”one-shot” object detector known for its high efficiency,
outperforms other models, running up to 3× faster. YOLO divides the input image into an
S × S grid, where each cell predicts B bounding boxes and their confidence scores.

The model and dataset employed in this paper originate from Hugging Face, https:
//huggingface.co/keremberke/yolov5m-license-plate with the dataset consisting of
8,832 images. The model is built upon YOLOv5 and fine-tuned for the task of license plate
detection. According to the model’s author, it achieves an mAP@0.5 score of 0.988 on the
validation set.

Note that the term patch is used with two distinct meanings in this work: as an adver-
sarial patch strategically placed on an image to deceive the detector, and as a segment of
an image identified during our SHAP analysis.

3. Experimental results

3.1 DPatch adversarial attack

The initial phase of our work focused on attacking the model through the generation of
adversarial examples with DPatch method. The patch training utilized a set of 100 ran-
dom images, with the final training duration lasting 12 hours on a single P5000 GPU. In
contrast to the original paper, which used 300,000 iterations, the training involved 50,000
iterations. The process employed implementation based on Lee and Kolter (2019) from
the Adversarial Robustness Toolbox (ART) library: https://github.com/Trusted-AI/

adversarial-robustness-toolbox. The resulting DPatch was sized at 250x250 and posi-
tioned at (50x50). All images underwent rescaling to 640x640 to meet model’s requirements.
We initially set the learning rate to 0.5 and decayed it by 0.95 every 5000 iterations. No-
tably, smaller DPatches were found to be ineffective during the training phase, and hyper-
parameter tuning did not yield discernible improvements. The training process stabilized
around 30,000 iterations, with further steps showing no significant improvement. Perfor-
mance evaluation during training involved monitoring model losses (total loss, objectness
loss, box loss), which were expected to increase, and tracking the number of images on
which the model failed to detect any object after applying the patch—an indicator that was
anticipated to rise as well.

After applying the trained DPatch, 33% of the original detections were missing, con-
trasting with 2% when using a random patch of the same size and location. Successful cases
for the DPatch were predominantly observed when the patch was close to the license plate,
including instances where it intersected with it. It is noteworthy that even when applying
a random patch that intersected with the license plate, the model still successfully detected
it. Upon examining resulting detections on patched images without explanatory methods
like SHAP, it appeared that the DPatch primarily exerted local effects. Overall, the results
indicated that the DPatch needs to be relatively large and positioned near the license plate
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to disrupt object detection effectively. Additionally, the attack success rate did not align
well with the reported results in the original paper. Graphs illustrating the training process
and DPatch visualizations can be found in Appendix A.

Several factors could explain the observed limitations in the success of the DPatch
attack. Firstly, the DPatch papers targeted the YOLOv3 model, which is an older version
of YOLO. It is plausible that more recent iterations of YOLO exhibit increased resilience
to adversarial attacks. Secondly, the task of detecting license plates may inherently be
simpler than detecting a diverse range of classes from the COCO dataset Lin et al. (2015),
as employed in the original paper. Additionally, the model in focus underwent fine-tuning
for the specific task of license plate detection. Unlike the original paper, where attacks
could target multiple classes, our DPatch training had a narrower scope, focusing solely on
one class. Consequently, it couldn’t effectively exploit vulnerabilities related to class loss.
Lastly, considering the varied success rates observed across classes in the original paper,
with some achieving nearly 0 mAP after applying the patch and others exhibiting lower
success rates, license plates may fall into the latter category, proving to be challenging
targets for effective adversarial attacks.

3.2 SHAP explonations

The second phase of our work focused on understanding the model predictions. We used
a variation of the SHAP method and conducted a comparative analysis of prediction ex-
planations on original images, images with the applied trained DPatch, and images with
a random patch. The results of these explanations revealed the contributions of image
segments to license plate detection. Upon initial visual examination, we observed that our
trained DPatch did not alter the positive contribution of the segment containing the license
plate to detection. However, we noted that patch containing DPatch was causing a negative
contribution to the detection. Additionally, SHAP explanations revealed that the DPatch
had a contribution to the detection only when it was in proximity to the license plate. We
also aimed to use metrics that would help to quantify and compare explanations across 3
sets of images: orig (original images), dpatch (images with DPatch applied), rand (images
with random patch applied). The employed metrics were:

• most-pos-inf-invariant(A, B) - counts what percent of corresponding images in
two sets A, B (e.g. orig and dpatch) have the same patch with highest positive
contribution.

• most-neg-inf-invariant(A, B) - counts what percent of corresponding images in
two sets have the same patch with lowest negative contribution.

• mean-abs-contr-diff(A, B) - An average of absolute differences between contribu-
tion of the same patches in corresponding images from set A and B.
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orig DPatch rand

orig x 0.84 0.92
DPatch 0.84 x 0.86
rand 0.92 0.86 x

Table 1: Most positive patch invariant

orig DPatch rand

orig x 0.29 0.38
DPatch 0.29 x 0.32
rand 0.38 0.32 x

Table 2: Most negative patch invariant

orig DPatch rand

orig x 0.024936 0.014256
DPatch 0.024936 x 0.0198
rand 0.014256 0.0198 x

Table 3: Mean abs patch contribution difference

• most−neg−patch−inv(orig, dpatch) < most−neg−patch−inv(orig, random) indi-
cates that DPatch has a stronger impact on changing the most negatively contributing
segments compared to random patch.

• most−pos−patch−inv(orig, dpatch) < most−neg−patch−inv(orig, random) indi-
cates that DPatch has a stronger impact on changing the most positively contributing
segments compared to random patch.

• most − pos − patch − inv(rand, dpatch) ∼ most − pos − patch − inv(orig, dpatch),
most − neg − patch − inv(rand, dpatch) ∼ most − neg − patch − inv(orig, dpatch)
which implies that explonations of rand and orig are similar.

• mean− abs− contr− diff(orig, rand) < mean− abs− contr− diff(dpatch, rand) <
mean−abs−contr−diff(orig, dpatch) indicates that difference between explonations
of orig and rand is smaller than between orig and dpatch.

All of the above seems to be coherent with intuition and initial visual examination of the
explonations.

4. Conclusion

This study examines the robustness and interpretability of a fine-tuned YOLOv5 model for
license plate detection using DPatch adversarial attacks and SHAP analysis.

DPatch experiments revealed limitations in perturbing the model, with reduced de-
tection rates. Discrepancies from the original DPatch paper were attributed to specific
fine-tuning for license plate detection and potential model advancements.

SHAP analysis provided insights into the model’s decision-making, highlighting the lo-
cal effects of DPatch and the model’s focus on specific regions, such as the license plate.
Numbers from Tables 1-3 align with our observations and further solidify our understanding
on DPatch attacks.
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Appendix A. DPatch - training and visualization

Figure 1: Our patch Figure 2: Lee and Kolter (2019) patch

Figure 1 and 2 present a DPatch trained by us and compare it with the one presented
in the original paper. It is evident that our patch lacks visible structures in comparison to
the latter.

Figure 3: Detections on im-
age without ap-
plied patch

Figure 4: Detections on im-
age with random
patch

Figure 5: Detections on im-
age with trained
patch
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Figure 6: Original image Figure 7: Random patch Figure 8: DPatch

Figures 3-8 present one of the successful patch attacks when DPatch was in near prox-
imity of license plate.

Figure 9: Original image Figure 10: Random patch Figure 11: DPatch

Figures 9-11 present a case when applying DPatch had no effect on detection.

Figure 12: Total loss Figure 13: Objectness loss Figure 14: Box loss
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Figures 12 - 14 present how model losses increased during training.

Figure 15: Number of images with any detection after applying DPatch

Figure 15 present number of detections on images with DPatch applied decreased during
training and stabilized at around 67 at the end.

Appendix B. SHAP explonations

Figure 16: SHAP on original
image

Figure 17: SHAP on image
with random
patch

Figure 18: SHAP on image
with DPatch

Figures 16, 17, 18 present contributions of different segments of images on the license plate
prediction. Blue segments have a negative impact, while red segments have a positive
impact. Segment with a DPatch on figure 18 has a large negative contribution. a

Appendix C. Possible Improvements

We suggest a few improvements that can improve the quality of this approach.
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• In future work, we could investigate training smaller DPatches and dynamically ap-
plying them to the license plate, such as in the corners. This strategy aims to address
practical scenarios where individuals attempt to deceive the detection system with
small stick-on modifications to their plates. The rationale is that this approach may
be effective due to the DPatch’s substantial impact near the detectable objects.

• One can try normalizing SHAP values to bring more meaning into numeric metrics.

• due to our way of calculating SHAP values, all of shap values are 0 when model
returns no detections - providing us with no explanation. Instead, we could disable
non max suppression and calculate regular shap based on detection score attached to
bbox closest (ex. in IOU terms) to target bbox.

• new metrics could be introduced. 1. GT −most − pos − influencial which returns
1 if the patch with the greatest positive contribution has non-zero intersection with
target bbox, otherwise 0. This could allow us to test our observations that target
bbox (licence plate) should have greatest positive contribution and find anomalies. 2.
DPatch − most − neg − influencial which returns 1 if the patch with the smallest
negative contribution has a non-zero intersection with applied DPatch, otherwise 0.
This one could allow us to test our observations that patches introduce local negative
influence and find anomalies.
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