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Abstract

The goal of this project is to explore and understand the latest advancements in the au-
tomatic transcription of performance MIDI streams into musical scores, specifically within
the broader scope of Audio Music Transcription (AMT). We analyze the recent paper
Performance MIDI-to-score Conversion by Neural Beat Tracking (Liu et al., 2022), which
comprises two main components: rhythm quantization and score generation based on a
Convolutional Recurrent Neural Network (CRNN) architecture.

We investigate the model’s behavior using sequence perturbations and a LIME-like
approach.

1. Introduction

Performance MIDI-to-score transcription is a subset of the broader task of converting raw
audio signals into musical scores, known as Automatic Music Transcription (AMT).

Figure 1: Intermediate AMT steps:
1. raw audio signal,
2. spectrogram,
3. MIDI stream,
4. score.
Source: Benetos et al.,
2019.

This task typically involves several phases:

1. Conversion of the raw audio signal to a spectro-
gram: A spectrogram visually represents audio with
two dimensions: time and frequency, and color intensity
indicating the amplitude of a particular frequency.

2. Conversion of the spectrogram to a MIDI
stream: A MIDI stream records musical events, such
as the start and end of notes, without being divided into
bars.

3. Conversion of the MIDI stream to a score: Notes
are quantized to specific lengths, the stream is divided
into bars, and key signature, time signature, and clef
assignments are made.

We focus on examining a model addressing the final phase,
specifically designed for piano compositions where each track
corresponds to either the left or right hand.

2. Model

The model comprises two main components: rhythm quantization and score generation.
Our primary interest lies in the latter. It assigns various musical elements, including tempo,
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downbeats, beats, musical onsets, note duration, time signature numerator, time signature
denominator, key signature, and hand parts.

The hand part model, key signature model, and time signature models can be considered
independent, with no information flow between them. Refer to Figure 2 for a detailed model
architecture.

The model takes a MIDI stream as input, encoded as x = {(pn, on, dn, vn)}Nn=1 of shape
(N, 4), with N rows encoding N notes. The features include pitch pn (from 0 to 127), onset
on (in seconds), duration dn (in seconds), and velocity vn (an integer from 0 to 127).

We utilized the model trained by the authors of the paper.

3. Ceteris Paribus

We conducted a ceteris paribus analysis focusing on musical element models, making several
assumptions:

� Note velocity should not affect time signature or hand part assignment.
� Note duration should not impact key signature.
� Note pitch is crucial for key signature/hand part assigning, while other features should

not contribute.
� Note pitch does not matter for the time signature.

These should be regarded as general guidelines rather than strict principles.

3.1 Perturbations

For a sample M = 50 musical pieces from the dataset, we introduced perturbations to test
the assumptions:

� Changing velocity with standard deviations σv of 8, 16, 32, and 64.
� Scaling note lengths by a factor from an interval α ∈ (αl, 1), where αl ∈ {0.9, 0.75, 0.5, 0.2}

(note extension may lead to overlapping).
� Changing pitch with standard deviations σp of 12 and 24 (whole octave, double oc-

tave).

Each transformation is applied separately to each feature, note by note. Notice that we
don’t change onsets as they change the musical structure of a piece.

For each feature model f : hand part fH , key signature fK , time signature fT , we
calculated the average error between the output sequence and the output of a perturbed
sequence.

For each element xi in the dataset sample i ∈ {1, 2, . . . , 50} and for each change, we
sampled m = 10 perturbations x(j) of the original item and measured the error:
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Higher error values indicate greater influence on the output f from a transformation.
This analysis directly measures the model’s robustness to specific transformations and

does not rely on the model’s overall performance.

3.2 Results

Among all three models, the key signature fK model proved to be robust to all proposed
transformations, with an average error of less than 1.5% in each category.

The hand part model fH error is robust to note shortening (maximum average error
of 3%), but inconsistent when note velocities are changed. This inconsistency is mitigated
by maintaining consistent velocity for notes played simultaneously. We hypothesize that
chords played by one hand typically have similar velocities (see Table 2 for detailed results).

The time signature model is quite robust to note velocity and pitch manipulations
(average errors less than 13%), but loses consistency when notes are shortened.

velocity change σv duration change αl pitch change σp
model 8 16 32 64 0.9 0.75 0.50 0.20 12 24

fH 7.61 15.65 25.69 34.80 0.29 0.76 1.67 3.08
fK 0.07 0.15 0.32 0.46 0.12 0.32 0.75 1.13
fT 1.05 2.10 3.78 9.77 3.42 10.10 25.21 39.67 6.50 12.73

Table 1: The average errors of certain perturbations (in percent).

velocity change σv
variant 8 16 32 64

standard 7.61 15.65 25.69 34.80
uniform within groups 2.70 6.44 11.50 15.14

Table 2: The average errors for the hand part model fH for 1. standard perturbation, 2.
uniform random change for notes played in the same time. The second transfor-
mation introduces less inconsistencies.

Figure 3 in the Appendix illustrates all results, including interaction perturbations.

3.3 Local Feature Importance

We encountered challenges with common explainable machine learning tools:

� Input data is a tensor of variable length, not conforming to tabular or image-like
formats supported by many tools.

� The input data is a very high-dimensional space, computationally infeasible for certain
methods (e.g. Shapley values).

� Pitch perturbations introduce non-integer values, and the pitch space lacks a mean-
ingful measure of distance.
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� Some model components (e.g. GRU blocks, ELU activation function) are not sup-
ported by certain XAI libraries.

We developed a custom solution to overcome these obstacles. For velocity, we applied a
LIME-like approach due to the absence of metric structure in the pitch space. We generated
a locally modified version of the MIDI stream tensor for each note, randomizing the velocity
for one note. We created 100 samples for each note, calculating model predictions to
compare with the original prediction. This approach aids in explaining the findings from
the previous section (see Figure 5 for an example).

We also measured the mean influence through this approach: the square root of the
mean of squares of linear regression coefficients. This approach aligns with the ceteris
paribus analysis.

model fH fK fT
average influence 0.37 0.04 0.05

Table 3: The average influence of three models calculated by a LIME-like approach.

However, the proposed approach ignores the feature interaction and silently assumes
variable independence, both horizontally and vertically. This is a serious limitation of this
approach.

3.4 Key Signature Assignment by Note Omission

For the key signature model, as the pitch space is not a metric space, we applied a different
strategy. The method is as follows:

1. Get the key signature prediction values (before the last activation function) for the
entire sequence.

2. Individually remove each note in a sequence and calculate the difference between the
original prediction and the prediction made on a sequence without a single note.

3. Compute a contribution score, represented by the mean of the differences for each
note.

This approach enables the measurement of each note’s contribution to the attribution of a
specific scale. Refer to Figure 6 for an illustrative example.

4. Conclusion

We were able to discover certain artifacts of the score generation models, especially when it
comes to velocity contribution to hand part assignment. The time signature model is not
fully robust to alterations that should not have affect the output.

Unfortunately, the proposed methods have drawbacks and are not fully justified. Cur-
rent XAI methods do not work well with symbolic music data in general. Developing
more tailored and adaptable XAI methods for musical applications could contribute to im-
proved model interpretability. One of the challenge would be to find a reasonable (and
interpretable) embedding of the pitch space that encodes musical features.
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Appendix A. Model
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Figure 2: An architecture of the model. There are six separate modules of the entire model
in total: beat, quantization, time signature, key signature and hand part.
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Appendix B. Dataset

The model has been trained on three datasets containing classical piano compositions,
including Bach, Mozart, Beethoven, Chopin or Liszt.

As the authors of the original work, for model analysis we used three different datasets:

� A-MAPS v1.1 (Ycart and Benetos (2018)), 266 items

� ASAP (Foscarin et al. (2020)), 1586 items

� CPM (Krueger (1996)), 337 items

We took a sample of M = 50 pieces to work with.
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Appendix C. Results

Figure 3: Results of the ceteris paribus experiment for the hand part model fH , the key
signature model fK and the time signature model fT . The hand part model is
robust to note duration changes while it is susceptible to velocity manipulation.
On the other hand, the time signature model is sensitive to note duration changes,
which is expected to some extent, and relatively robust to other transformations.
The key signature model is robust to all perturbations.
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Figure 4: The piano roll for the hand part model output. Each note is represented as a (blue
or red) block, indicating a pitch (note), duration and velocity. The first graph
represents an original sequence while the second has perturbed velocity. Left-hand
notes are marked as red. We can see that there are much many misalignment
in the hand assignment in the second output. As a rule of thumb, the left hand
notes (red) should be at the bottom while the right hand ones (blue) should be
at the top.
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Figure 5: A graph showing how the velocity of the second C5 note (with a thick outline)
influences hand part assignments of other notes. It can be observed that the
current velocity of this note makes the model think of the first F3 note as a left
hand note. Reducing the note C5 velocity to a low value results in a misassigning
F3 as the right hand note. This is, of course, a undesired behavior of the model.

Figure 6: A key signature alignment for D] scale. The names on the notes represent the
model key signature attribution. There are two different scales assigned by the
model: D] scale and G] scale. Notes: D, E and A are not in the scale and have
a negative influence on the assignment.
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