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Abstract

This study conducts a Red Teaming analysis on the Breast Cancer Detector Model, a
Convolutional Neural Network designed for predicting breast cancer from tissue scans.
Using eXplainable Artificial Intelligence (XAI) techniques, we assess the model’s reliability,
investigating influences from unintended artifacts and evaluating its generalization with
out-of-distribution samples. Our aim is to uncover vulnerabilities and enhance the model’s
robustness in clinical applications.

1. Introduction

In recent years, Red Teaming has emerged as a crucial methodology for evaluating the
robustness and reliability of machine learning models. With the widespread adoption of
deep learning models, a comprehensive understanding of their decision-making processes
is important. Especially, this becomes crucial in medical applications, where artifacts or
biases in the training data can lead to inaccurate predictions, posing significant risks to
patient outcomes. Additionally, a clear insight into a model’s predictions is important for
clinicians to confidently integrate AI-based tools into their decision-making processes.

Our analysis focuses on a comprehensive examination of a Breast Cancer Detector
Model. To test how well the model works, we examined challenging samples and conducted
out-of-distribution testing by augmenting images from the training set with variations in
brightness and color. We used LIME and SHAP to make sure the model’s predictions were
based on real cancer-related features. By comparing with examples from a dataset with
annotations, we could understand more about how the model makes decisions. Through
these methods, we found out important features and weaknesses in the model, helping us
understand better where it works well and where it might struggle in medical diagnoses.

2. Methodology

2.1 Model

We examine a classification model based on Convolutional Neural Networks (CNNs) avail-
able on Hugging Face. The model is designed to predict whether breast tissues within image
patches contain Invasive Ductal Carcinoma (IDC) - the predominant type of breast cancer.
The model attains an accuracy of 87% on the test set.
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2.2 Datasets

We examine the model using two datasets:

Breast Histopathology Images: The training dataset, available on Kaggle. It con-
sists of 277,524 patches sized 50 x 50 extracted from 162 whole mount slide images of Breast
Cancer specimens scanned at a magnification of 40x. This patches are categorized into IDC
negative (198,738 patches) and IDC positive (78,786 patches).

BreCaHAD: The original dataset, from which the patches were extracted, comprises
162 breast cancer histopathology microscopic biopsy images with dimensions of 1360x1024
pixels. Each image is annotated, a crucial aspect for comparison with generated explana-
tions.

2.3 Data Augmentation and Dataset Exploration

We conduct a basic investigation of the model’s performance on the training dataset, in-
cluding a review of the confusion matrix and logit distribution. We investigate positive
and negative samples visually to identify patterns, easy and hard samples or samples for
which the model is not certain of it’s prediction. We generate histograms representing the
distribution of pixel values for positive and negative predictions and compare them with
the true distribution. We apply common data perturbation techniques, such as Gaussian
blur and variations in color and brightness, to the original dataset, and evaluate the model’s
performance on such modified images. Additionally, we test the model on a subset of the
BreCaHAD dataset on randomly cropped 50x50 patches.

2.4 Explanation techniques

LIME is a technique for generating locally interpretable explanations of machine learning
models. It works by perturbing input instances and observing changes in predictions. In
our study, LIME is applied to specific dataset samples, creating simple, understandable
models for each instance. This approach helps reveal the factors influencing the model’s
decision-making at the local level.
SHAP values, rooted in cooperative game theory, allocate the contribution of each feature
fairly to a prediction. In model interpretation, SHAP values quantify the impact of indi-
vidual features on the model’s output. For our analysis, SHAP is used to understand the
importance of different features in the Breast Cancer Detector Model and highlight critical
elements influencing the model’s decision.

3. Experimental results

3.1 Initial investigation

Initially, we confirmed the model’s accuracy at 87% on the provided dataset. We examined
the confusion matrix of the predictions: total number of true negatives (1911196), false
negatives (27941), true positives (7542) and true positives (50845). Notably, there is a
relatively high amount of false negatives - approximately one-third of cancerous tissues
are predicted as healthy. Further analysis of the distribution of logits showed the model’s
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(a) TP (b) FP (c) TN (d) FN

Figure 1: Comparison of positive and negative samples

high certainty in negative predictions but uncertainty in positive predictions, potentially
attributed to the initial class imbalance in the training dataset.

Further, we visually examined samples where the model made incorrect predictions,
revealing a pattern in image style. Specifically, samples predicted as negative consistently
exhibited lighter colors and a smooth structure, while samples predicted as positive tended
to be darker and coarser. Uncertain samples were a combination of the two. Example
samples are showed on Figure 1.

To test our hypothesis, we conducted a simple experiment with 1000 random images.
We estimated pixel value distributions for samples labeled as positives and compared them
with the distributions for samples predicted as positive by the model. The same compar-
ison was made for negative samples, revealing strikingly similar distributions. We include
distribution plots in Appendix A.

3.2 Data augmentation

We assessed the model’s robustness to dataset perturbations, including grayscale conver-
sion, Gaussian Blur application, and brightness adjustment. The evaluation involved 1000
randomly selected samples, revealing the model’s high sensitivity to these perturbations.
Grayscale conversion consistently led to false labels, while adjusting brightness resulted in
a significant accuracy drop. Beyond a certain threshold, the model consistently assigned
false labels again. Interestingly, Gaussian Blur didn’t show this effect - the model re-
mained quite robust to blurred images. Plots illustrating accuracy across different values
of blur/brightness factor can be found in Appendix B.

3.3 LIME

Analysis performed with LIME revealed that the model assigns the greatest contribution
to regions lying between light and dark areas. Those parts of the image contribute to
the overall prediction the most. This tendency is independent to image’s brightness, color
palette etc. We observed it while explaining both correct and inaccurate predictions - of
both healthy and infected tissues. The model tends to associate images, which depict sharp
transitions, with high probability of cancer. Although the huge majority of test images
indeed could be classified this way, we were able to fool the model, providing images (of
infected tissues) with ”mild” transitions, described above. The result usually lay somewhere
in range (0.1 - 0.4), while to be classified as infected tissue - the result is required to be
above 0.5.

3



Drzewiecki, Michaluk

Figure 2: Comparison of SHAP feature attribution with annotated sample

3.4 SHAP

We tried to find out, how little changes of image’s brightness can affect the contribution of
same areas to the prediction. Regardless of the brightness level (within the range within
which the model achieves > 80% accuracy), SHAP analysis showed that the model is almost
always able to spot distinctive areas and correctly associate them with positive/negative
influence. We investigated the arising question - how changes in brightness affect largeness
of the SHAP values for every spotted area. Again, the model proved to behave almost
identically. The SHAP values we intended to test, ranged usually from -0.001 to 0.001 for
every pixel. We also observed the phenomenon discovered with LIME - pixels belonging to
distinctive perimeters or hulls affected the result the most.

We observed, however, if not vulnerability - an interesting property of bright areas. It
turns out that alongside with the rising prediction value, the model tends to associate
increasingly significant contribution to distinctively lighter areas (especially when they are
very small). This behavior resembles the mirrored problem - as if the model was to detect
healthy region in cancer tissue. With no doubt intriguing, the influence of this property
proved to be exceptionally elusive, affecting the prediction little to nothing.

4. Conclusion

Performed analysis proved strength of the model. Various vulnerabilities we were able to
find turned out to be very intricate, unlike to be revealed in day to day usage. We assess the
uncertainty while classifying the sample as infected tissue, to be promising field to improve.
We can conclude that phenomena discovered during LIME and SHAP analysis are deeply
connected to this problem. Also, we advise care in ensuring the quality of input data, as
vulnerabilities involving data augmentation were exposed.
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(a) True label: 0 (b) Prediction: 0

Figure 3: Comparison of color distribution in ”no-cancer” samples

(a) True label: 1 (b) Prediction: 1

Figure 4: Comparison of color distribution in ”cancer” samples

Appendix A. Estimated color distribution

Appendix B. Performance on perturbed data

Appendix C. SHAP plots

todo

Appendix D. LIME plots

todo
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